Bayesian methods give us an alternative way to think about probability, with applications in business decision-making.
While traditional statistics requires us to observe a meaningful sample to inform decisions, Bayesian methods allow a “best guess” approach based on available information. These approaches also allow us to include other information such as beliefs and outside knowledge.
This course will take you on a step-by-step journey, from traditional statistical approaches, through conditional probability and Bayes Theorem. These concepts will form a foundation to help you understand two basic Machine-Learning examples introduced in the course. In the end, you’ll produce a real-world classification model using Python.
Upon completing this course, you will be able to:
Recommended courses to complete before taking this course.
Level 5
1h 27min
100% online and self-paced
Field of Study: Finance
Start LearningAccess and download collection of free Templates to help power your productivity and performance.
Already have an account? Log in
Take your learning and productivity to the next level with our Premium Templates.
Upgrading to a paid membership gives you access to our extensive collection of plug-and-play Templates designed to power your performance—as well as CFI's full course catalog and accredited Certification Programs.
Already have a Self-Study or Full-Immersion membership? Log in
Gain unlimited access to more than 250 productivity Templates, CFI's full course catalog and accredited Certification Programs, hundreds of resources, expert reviews and support, the chance to work with real-world finance and research tools, and more.
Already have a Full-Immersion membership? Log in